quinta-feira, 3 de maio de 2012

Distância entre dois pontos - 3EM


A base da geometria analítica encontra-se na distância entre dois pontos, pois muitos conceitos são inerentes a esse. Portanto, compreender a expressão algébrica para o cálculo da distância entre dois pontos colabora para uma compreensão fidedigna de outros conceitos da geometria analítica.


Distância entre dois Pontos



A distância permeia todos os conceitos da geometria analítica, pois nesta área da matemática temos a relação de elementos geométricos com os algébricos, e o elemento básico da geometria é o ponto.


Um dos conceitos básicos que vimos na geometria é que a menor distância entre dois pontos é dada por uma reta, contudo, na geometria analítica esses pontos recebem coordenadas no plano cartesiano e por meio dessas coordenadas podemos encontrar o valor da distância entre dois pontos.


Vamos representar dois pontos quaisquer no plano cartesiano.


Dois pontos no plano cartesiano


Portanto, teremos que a distância entre os pontos A e B será a medida do segmento que tem os dois pontos como extremidade. Por se tratar de dois pontos quaisquer, representaremos as coordenadas desses pontos de maneira genérica.


Representação dos pontos e da distância


Sabe-se que os eixos coordenados do plano cartesiano são ortogonais, portanto, podemos construir um triângulo retângulo utilizando os pontos A e B, como mostra a figura a seguir.


Triângulo retângulo AOB



Note que o segmento AB é a hipotenusa do triângulo AOB, e a medida de AB corresponde à distância entre esses dois pontos. Por se tratar de um triângulo retângulo, podemos aplicar o teorema de Pitágoras, no qual teremos:





Note que basta fazer as diferenças das coordenadas de cada um dos pontos e elevar ao quadrado, contudo são coordenadas do eixo X com coordenadas do eixo X e de forma análoga para as coordenadas do eixo Y.


Calcule a distância entre os pontos: A (4,5) e B(1,1) e represente-os geometricamente.


Como vimos anteriormente, basta aplicar a expressão para o cálculo da distância entre dois pontos. Sendo assim:


Geometricamente:
Representação geométrica do exemplo dado


Qualquer dúvida, favor entrar em contato com o professor.
Grato!


Prof. Fábio Luiz




Nenhum comentário:

Postar um comentário